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Why not ’truly’ random sequences
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Pseudorandom Sequences

Sequences that are generated by a deterministic algorithm
and look random are called pseudorandom

Desirable randomness properties depend on the application.

cryptography: unpredictability
simulation: uniform distribution
radar: distinction from reflected signal
...
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Feedback Shift Registers (FSRs)

an initial state (s0, s1, · · · , sn−1)
a feedback function: f(x0, x1, · · · , xn−1)
FSR sequecnes: for initial states (s0, s1, · · · , sn−1), an FSR
generates sequences s = {si} via the recursion

si+n = f(si, si+1, · · · , si+n−1), i ≥ 0
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A toy example

Let f1(x0, x1, x2) = 1 + x0 + x1 + x1x2.

i (xi, xi+1, xi+2) xi+3

0 000 1
1 001 1
2 011 1
3 111 0
4 110 1
5 101 0
6 010 0
7 100 0

The output sequence: 00011101...



Feedback Shift Registers Complexity Measures of Sequences Max. Nonlinear Complexity Seq.

Linear Feedback Shift Registers (LFSRs)

The feedback function f is linear, namely, having the form

f(x0, x1, · · · , xn−1) = c0x0 + c1x1 + · · ·+ cn−1xn−1, ci ∈ Fq

The theory of LFSR is well developed (by Ward, Golomb,
Selmer, Zierler, etc)

linear recurrence st+n = cn−1st+n−1 + · · ·+ c1s1 + c0s0

the output sequences (s0s1s2 · · · ) can be studied via the
characteristic polynomial

f(x) = xn + c0x
n−1 + · · ·+ c1x+ c0

per(f) := the smallest integer e such that f(x)|(xe − 1)
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Two Fundamental Identities
1

g(x) =

∞∑
i=0

six
i =

ϕ∗(x)

f∗(x)

where ϕ(x) =
n−1∑
i=0

(
n−1−i∑
j=0

ci+j+1sj)x
i

2 for a periodic sequence (s0s1s2 · · · ) with period ε,

g(x) =

∞∑
i=0

six
i =

s0 + s1x+ · · ·+ sε−1x
ε−1

1− xε
=

σ∗(x)

1− xε
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Periods of LFSR sequences

g(x) =
ϕ∗(x)

f∗(x)
=

σ∗(x)

1− xε

Let per(f) = e and F (x) = (xe − 1)/f(x),

g(x) =

∞∑
i=0

six
i =

ϕ∗(x)

f∗(x)
=
ϕ∗(x)F ∗(x)

1− xe

⇒ all nontrivial output sequences s generated from f have
per(f) as a general period, i.e., per(s)|per(f)
when f(x) is irreducible, f(x)|xε − 1⇒ per(f)|per(s)
⇒ per(f) = per(s) for all nontrivial output sequences
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Periods of LFSR sequences

When f(x) is primitive, i.e., per(f) = 2n − 1 ⇒ the well-known
maximum-length sequences (m-sequence)

The m-sequences have very good statistical property (satisfying
the Golomb’s random postulates):

balancedness
run-property
2-level ideal autocorrelation

The m-sequences numerous applications in cryptography,
sequence design, coding theory, radar system, GPS, · · ·

They lead us to many interesting problems in these fields
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when it comes to nonlinear feedback functions, the world has
dramatically changed ...

General knowledge about NFSRs is rather limited

the output sequences are periodic iff. f is nonsingular, i.e.,

f = x0 + g(x1, · · · , xn−1)

the maximum period of an NFSR sequence is qn, which is a
q-ary DeBruijn sequence of order n

the total number of such sequence is (q!)q
n−1

qn

when q = 2, the number is 22n−1−n
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Problems with NFSRs are challenging

Periods of NFSR seqences
hard problem in general
rather few general results on the period
some nontrivial result in the case that the feedback
function is symmetric NFSRs
(by Kjeldsen, Søreng during 1970-80s)
Proofs are in general very technical and hard to read
Mykkeltveit (1979) used arithmetic codes to study periods
of NFSR
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Problems with NFSRs are challenging

Generation of NFSR sequences (with prescribed periods)?
Only some results for the extremity case: deBruijn sequences

comprehensive survey by Fredricksen in 1982
algorithmic methods (expensive for large n)
mathematic approaches (some progress with cycle joining
method)

starting with LFSRs
investigate adjacent cycles
characterize conjugate paris and join small cycles
progress in recent years

(1 + x)p(x), (1 + x2)p(x) (Mykkeltveit, Hemmati)
(1 + x)3p(x), (1 + x3)p(x) (Hellseth, Hu, Li, L. Zeng)
(1 + x)

∏
i pi(x) for primitive/irreducible polynomials

(Hellseth, Li, Li, Lin, L. Zeng, etc)
general polynomial

∏
i p

ei
i (x) (Lin et al.)
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FSRs =⇒ pseudo-random sequences

pseudo-random sequences =⇒ FSRs
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Linear Complexity

Let sn = (s0, s1, · · · , sn−1)∞ be a periodic sequence over F .

The linear complexity lc(sn) is the length L of the shortest
LFSR that generate the sequence sn

Berlekamp-Massey algorithm (initially from coding theory)
find the (unique) shortest LFSR that generate the sequence
if n ≥ 2lc(sn)

theoretic approach: lc(sn) = deg(f(x)) and

φ(x)

f(x)
=

σ(x)

xn − 1

⇒ lc(sn) = deg( xn−1
gcd(xn−1,σ(x))) = n− deg(gcd(xn − 1, σ(x)))
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Desirable properties for Applications

Sequences for cryptographic use should not have low linear
complexity.
However, high linear complexity does not guarantee
cryptographic strength

E.g., 0 · · · 01 has maximum linear complexity, but poor
cryptographic quality
A sequence with high linear complexity can probably be
generated by a (much) shorter FSR with nonlinear feedback
function
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Other Linear Complexity Measures

The k-th linear complexity lc(sn, k), 1 ≤ N ≤ n− 1, is the
length L of the shortest LFSR that generate (s0, s1, · · · , sN−1)

The k-th error linear complexity lck(sn) is the smallest
linear complexity that can be obtained by altering at most k
positions in sn
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Higher order complexity

The k-th order nonlinear complexity of
s = (s0, s1, · · · , sl−1) over an alphabet A is the length of

the shortest FSR with feedback function of degree ≤ k

that can generate the sequence s.

k = 1: linear complexity
k = 2: quadratic complexity
k = 3: cubic complexity
...
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Nonlinear Complexity

Maximum Order Complexity (by C. Jansen)

The nonlinear complexity of a sequence s = (s0, s1, · · · , sl−1)
over a field F is the length of the shortest (arbitrary) feedback
shift register that can generate the sequence s.
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Basic Facts - (non-periodic) sequences

Given a sequence sn = (s0, s1, · · · , sn−1) over F ,
nlc(s) = the shortest length l, such that all the
subsequences of s of length l, have unique successor
nlc(s) = the length-plus-one of the longest subsequences of
s that occurs (at least) twice with different successor
range of nlc(s) : 0 ≤ nlc(s) ≤ l − 1

nlc(s) = 0 iff. the sequence s = (α, · · · , α)
nlc(s) = l − 1 iff. the sequence s = (α, · · · , α, β) for α 6= β

a nonlinear complexity nlc(s) = c
⇒ all l-long subsequence of s are distinct for any for l > c

calculation of nlc(s): Blumer’s algorithm for directed
acyclic word graph (DAWG)
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Basic Facts - periodic sequences

For a periodic sequence sn = (s0, s1, · · · , sn−1)∞ over F ,
the nonlinear complexity satisfies the inequality

dlog|F|(n)e ≤ nlc(sn) ≤ n− 1

the nonlinear complexity of a period sequence sn is the
same as that of its

shift equivalent sequences

(si, si+1, · · · , si+n−1)
∞, i = 0, 1, · · · , n− 1

transposed sequence

T sn = (Ts0, T s1, · · · , T sn−1)∞

with an injection T : A → B for alphabet B with |B| ≥ |A|
reciprocal sequence (sn−1, · · · , s1, s0)∞

a complexity nlc(sn) = c
⇒ there are n distinct l-long subsequence for any for l ≥ c
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Basic Facts - periodic sequences

Feedback Functions Equivalents
For a periodic sequence sn = (s0, s1, · · · , sn−1)∞ over a finite
field GF (q), suppose the nonlinear complexity of sn is c, there
exist in total

qq
c−n

feedback functions that can the sequence sn

for n = qc, the sequence sn is a DeBruijn sequence of order c
for q = 2, this number is equal to the number of binary
DeBruijn sequences of order n



Feedback Shift Registers Complexity Measures of Sequences Max. Nonlinear Complexity Seq.

Basic Facts - periodic sequences (cont.)

Given a periodic sequence sn = (s0, s1, · · · , sn−1)∞, let
s = (s0, s1, · · · , sn−1) (a single period of sn).

nlc(sn) ≥ nlc(s)
nlc(sn) = nlc(st) for t ≥ 2, st denotes the t copies of s

In order to calculate nlc(sn),

it suffices to compute nlc(s2)
more precisely, if nlc(sn) = c, one only needs to investigate

nlc(s0, s1, · · · , sn−1, s0, · · · , sc−2)

by nlc(sn) ≤ n− 1, it suffices to calculate

nlc(s0, s1, · · · , sn−1, s0, · · · , sn−3),
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Motivation

high linear/nonlinear complexity is desirable for
(cryptographic) applications
non-periodic sequences: only one sequence (α · · ·αβ) has
maximum nonlinear complexity
for periodic sequences,

(α · · ·αβ)∞ has maximum nonlinear complexity
there are other periodic sequences with maximum nonlinear
complexity

Question
Can we characterize the periodic sequences with maximum
nonlinear complexity?
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Necessary Conditions

If a periodic sequence sn = (s0, s1, · · · , sn−1)∞ with nlc = c,
there exist two identical (c− 1)-long subsequence with
different successors in (s0, s1, · · · , sn−1, s0, · · · , sc−2);
each c-long subsequence of sn are distinct

If nlc(sn) = n− 1, then there is a integer 1 ≤ p < n such that
(s0, s1, · · · , sn−3) = (sp, sp+1, · · · , sp+n−3);
sn−2 6= sp+n−2; moreover, sn−1 6= sp+n−1 = sp−1
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Necessary Conditions (cont.)

nlc(sn) = n− 1⇔ ∃ 1 ≤ p < n such that si = si+p iff. i ∈ Zn−2

Question: what are such integers p?
Example: Let n = 10 and Ti = {k ∈ Zn : sk = si} for i ∈ Zn
p = 1 T0 = {0, 1, 2, 3, 4, 5, 6, 7, 8} s8 6= s9, s9 6= s0
p = 2 T0 = {0, 2, 4, 6, 8} s8 6= s0, s9 6= s1

T1 = {1, 3, 5, 7, 9}
p = 3 T0 = T1 = {0, 3, 6, 9, 1, 4, 7, 0} s8 6= s1, s9 6= s2

T2 = {2, 5, 8}
p = 4 T0 = {0, 4, 8}, T1 = {1, 5, 9} s8 6= s2, s9 6= s3

T2 = {2, 6, 0}, T3 = {3, 7, 1}
p = 5 T0 = {0, 5}, T1 = {1, 6}, T2 = {2, 7} s8 6= s3, s9 6= s4

T3 = {3, 8}, T4 = {4, 9}

Continuing the above process, p cannot be 6, 8

It appears that p needs to be coprime to n
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Necessary Conditions (cont.)

Take f = n/ gcd(p, n) and define

K = {(p− 1) + tp(modn) : t = 0, 1, · · · , f − 2}.

It follows that
n− 1 = (p− 1) + (f − 1)p(mod n) 6∈ K;
n− 2 belongs to K; otherwise,
sp−1 = · · · = s(p−1)+(f−2)p = s(p−1)+(f−1)p = sn−1

thus n− 2 = (p− 1) + t0p(mod n) for some t0

A periodic sequence sn has nlc(sn) = n− 1

⇔ ∃ 1 ≤ p < n such that si = si+p holds iff. i ∈ Zn−2
⇒ gcd(p, n) = 1
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Necessary Conditions (cont.)

Furthermore,
gcd(p, n) = 1⇒ there exists a unique pair (u, v) ∈ Z∗p × Z∗n
such that un− vp = 1.
Zn−1 can be partitioned as Zn−1 = H1 ∪H2 with

H1 = {(p− 1) + tp(modn) : t = 0, 1, · · · , v − 1}
H2 = {(p− 1) + tp(modn) : t = v, · · · , n− 1}

= {(p− 2) + tp(mod n) : t = 0, 1, · · · , n− v − 1}

n− 2 ≡ vp− 1 = (p− 1) + (v − 1)p(modn) in H1

n− 1 ≡ (p− 2) + (n− v − 1)p(modn) is H2

si = si+p holds iff. i ∈ Zn−2 implies
si = sn−2 for i ∈ H1 and si = sn−1 for i ∈ H2

sn−1 6= sn−2
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Necessary Conditions
A periodic sequence sn has nlc(sn) = n− 1

⇔ ∃ 1 ≤ p < n such that si = si+p iff. i ∈ Zn−2
⇒ gcd(p, n) = 1

∃ (u, v) ∈ Z∗p × Z∗n such that un− vp = 1
partition Zn = H1 ∪H2 with
H1 = {(p− 1) + tp(modn) : t ∈ Zv} and
H2 = {(p− 2) + tp(modn) : t ∈ Zn−v}

⇒ si =

{
sn−2 for i ∈ H1

sn−1 for i ∈ H2

and sn−2 6= sn−1

p = 1: sn = (α · · ·αβ)
p = 2 and n is odd: sn = (αβ · · ·αββ) = (αβ)

n−1
2 β

Question: What does sn look like for other p coprime to n?
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A recursive construction

For two integers r0, r1 with r0 > r1 and gcd(r0, r1) = 1, applying
the Euclidean algorithm on them gives

ri+1 = ri−1 −miri, i = 1, 2, · · · , k,

with r1 > r2 > · · · > rk+1 = 1.

Define a class of periodic sequences as follows:
sr0 = (sr1)

m1sr2 ,
sr1 = (sr2)

m2sr3 ,
...

srk−1
= (srk)

mksrk+1

where at denotes the concatenation of t copies of a
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The periodic sequences are given by

sri−1 = (sri)
misri+1 , i = 0, 1, · · · , k

with ri+1 = ri−1 −miri.

srk−1
is uniquely determined by srk and srk+1

with mk

srk−2
is uniquely determined by srk−1

and srk with mk−1

· · ·
recursively, sr0 is determined by srk , srk+1

and the integers
mk, · · · ,m1 and rk, · · · , r1
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The periodic sequences are given by

sri−1 = (sri)
misri+1 , i = 0, 1, · · · , k

with ri+1 = ri−1 −miri.

Theorem 1
If srk = ((α)rk−1β), srk+1

= (α), then nlc(srk−1
) = rk−1 − 1.

Moreover,
nlc(srk−2

) = rk−2 − 1
...

nlc(sr1) = r1 − 1
nlc(sr0) = r0 − 1
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nlc(sn) = n− 1⇔ ∃ 1 ≤ p < n such that si = si+p iff. i ∈ Zn−2

Proof of Theorem 1.
nlc(srk) = rk − 1 and nlc(srk+1

) = rk+1 − 1 = 0

for the periodic sequence

srk−1
= (srk)

mksrk+1
= (αrk−1β)mkβ

denote s = (srk−1
)2

s[0 : rk−1 − 1] = srk−1
= (srk)

mk−1srksrk+1

s[rk : rk + rk−1 − 1] = (srk)
mk−1srk+1

srk

srksrk+1
= (αrk−1β)α = (αrk−1)βα

srk+1
srk = α(αrk−1β) = (αrk−1)αβ

s[0 : rk−1 − 3] = s[rk : rk + rk−1 − 3]
s[rk−1 − 2 : rk−1 − 1] 6= s[rk + rk−1 − 2 : rk + rk−1 − 1]

nlc(sri) = ri − 1 by induction
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Main Theorem
A periodic sequence sn over F has nlc(sn) = n− 1 if and only if
it can, up to shift equivalence, be represented as one of the
following two forms:
1)

sn = ((α)n−1β) for p = 1,

2) sn = sr0 = (sr1)
m1sr2 for certain integer r1 ∈ Z∗n with

sri−1 = (sri)
misri+1 , i = 1, 2, · · · , k,

and
srk = ((α)rk−1β), srk+1

= (α),

where the integers mi, ri+1 are derived from
ri+1 = ri−1 −miri with r1 > r2 > · · · > rk+1 = 1,

where α, β are any two different elements of F .
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Proof of Necessity.

A periodic sequence sn has nlc(sn) = n− 1

⇔ ∃ 1 ≤ p < n such that si = si+p iff. i ∈ Zn−2
⇒ gcd(p, n) = 1

∃ (u, v) ∈ Z∗p × Z∗n such that un− vp = 1
partition Zn = H1 ∪H2 with
H1 = {(p− 1) + tp(modn) : t ∈ Zv} and
H2 = {(p− 2) + tp(modn) : t ∈ Zn−v}

⇒ si =

{
sn−2 for i ∈ H1

sn−1 for i ∈ H2

and sn−2 6= sn−1



Feedback Shift Registers Complexity Measures of Sequences Max. Nonlinear Complexity Seq.

Proof of Necessity.
sr0 = r0 − 1⇒ ∃ r1 ∈ Z∗r0 yielding r1 > · · · > rk > rk+1 = 1

gcd(ri, ri+1) = 1⇒ ∃ ui, vi s.t. uiri − viri+1 = 1 for
i = 0, 1, · · · , k
define sets
Hi,1 = {(ri+1 − 1 + t · ri+1) (mod ri) | t ∈ Zvi},
Hi,2 = {(ri+1 − 2 + t · ri+1) (mod ri) | t ∈ Zri−vi}

Zri = Hi,1 ∪Hi,2 and sri [t] =

{
sri [ri − 2] for t ∈ Hi,1

sri [ri − 1] for t ∈ Hi,2
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Proof of Necessity (cont).

Zri = Hi,1 ∪Hi,2 and sri [t] =

{
sri [ri − 2] for t ∈ Hi,1

sri [ri − 1] for t ∈ Hi,2

How to determine Hi,1 and Hi,2?

Hi,1 =
⋃
t∈Hi+1,2

{x ∈ Zri |x ≡ t(mod ri+1)}

Hi,2 =
⋃
t∈Hi+1,1

{x ∈ Zri |x ≡ t(mod ri+1)}

This implies

Hk,1, Hk,2 ⇒ Hk−1,1, Hk−1,2
...

H2,1, H2,2 ⇒ H1,1, H1,2

H1,1, H1,2 ⇒ H0,1, H0,2

for rk > rk+1 = 1, srk = (α)rk−1β

Hk,1 = {0, 1, · · · , rk − 2} and Hk−2 = rk − 1
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Enumeration
The total number N , up to shift equivalence, of periodic
sequence with maximum nonlinear complexity over F is

N = φ(n)|F|/2,

where φ(n) is the Euler’s totient function.
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Examples
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Randomness Analysis

For all binary periodic sequences sn with nlc(sn) = n− 1,
balancedness: sn is (nearly) balanced only if
sn = (01)

n−1
2 0 for odd; others are far from being balanced

scalability: there exist many subsequence with small
nonlinear complexity
k-th error complexity: changing a few bits dramatically
decrease the nonlinear complexity

The randomness properties of such sequences are not sounding.



Feedback Shift Registers Complexity Measures of Sequences Max. Nonlinear Complexity Seq.

Thanks for your attention!
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