Investigation of Periodic Sequences with Maximum Nonlinear Complexity

Chunlei Li

Joint work with Zhimin Sun, Xiangyong Zeng and Tor Helleseth

University of Bergen

July 3 - 8, BFA-2017

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Outline

1 Feedback Shift Registers

- Linear Feedback Shift Registers
- Nonlinear Feedback Shift Registers
- 2 Complexity Measures of Sequences
 - Linear Complexity
 - Nonlinear Complexity

8 Periodic Sequences with Maximum Nonlinear Complexity

- Necessary and Sufficient Conditions
- Main Construction
- Randomness Analysis

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Why not 'truly' random sequences

DILBERT By Scott Adams

Pseudorandom Sequences

Sequences that are generated by a **deterministic** algorithm and **look random** are called **pseudorandom**

Desirable randomness properties depend on the application.

- cryptography: unpredictability
- simulation: uniform distribution
- radar: distinction from reflected signal
- ...

Complexity Measures of Sequences 000000000 Max. Nonlinear Complexity Seq. 00000000000000

Feedback Shift Registers (FSRs)

- an initial state $(s_0, s_1, \cdots, s_{n-1})$
- a feedback function: $f(x_0, x_1, \cdots, x_{n-1})$
- FSR sequecnes: for initial states $(s_0, s_1, \dots, s_{n-1})$, an FSR generates sequences $\mathbf{s} = \{s_i\}$ via the recursion

$$s_{i+n} = f(s_i, s_{i+1}, \cdots, s_{i+n-1}), i \ge 0$$

Complexity Measures of Sequences 000000000

Max. Nonlinear Complexity Seq. 000000000000000

A toy example

Let
$$f_1(x_0, x_1, x_2) = 1 + x_0 + x_1 + x_1 x_2$$
.

i	(x_i, x_{i+1}, x_{i+2})	x_{i+3}
0	000	1
1	001	1
2	011	1
3	111	0
4	110	1
5	101	0
6	010	0
7	100	0

The output sequence: 00011101...

Linear Feedback Shift Registers (LFSRs)

The feedback function f is linear, namely, having the form

$$f(x_0, x_1, \cdots, x_{n-1}) = c_0 x_0 + c_1 x_1 + \dots + c_{n-1} x_{n-1}, \quad c_i \in \mathbb{F}_q$$

The theory of LFSR is well developed (by Ward, Golomb, Selmer, Zierler, etc)

- linear recurrence $s_{t+n} = c_{n-1}s_{t+n-1} + \dots + c_1s_1 + c_0s_0$
- the output sequences $(s_0s_1s_2\cdots)$ can be studied via the characteristic polynomial

$$f(x) = x^{n} + c_0 x^{n-1} + \dots + c_1 x + c_0$$

• per(f) := the smallest integer e such that $f(x)|(x^e - 1)$

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 000000000000000

Two Fundamental Identities

$$g(x) = \sum_{i=0}^{\infty} s_i x^i = \frac{\varphi^*(x)}{f^*(x)}$$

where
$$\varphi(x) = \sum_{i=0}^{n-1} (\sum_{j=0}^{n-1-i} c_{i+j+1} s_j) x^i$$

2 for a periodic sequence $(s_0 s_1 s_2 \cdots)$ with period ε ,

$$g(x) = \sum_{i=0}^{\infty} s_i x^i = \frac{s_0 + s_1 x + \dots + s_{\varepsilon - 1} x^{\varepsilon - 1}}{1 - x^{\varepsilon}} = \frac{\sigma^*(x)}{1 - x^{\varepsilon}}$$

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Periods of LFSR sequences

$$g(x) = \frac{\varphi^*(x)}{f^*(x)} = \frac{\sigma^*(x)}{1 - x^{\varepsilon}}$$

• Let
$$per(f) = e$$
 and $F(x) = (x^e - 1)/f(x)$,

$$g(x) = \sum_{i=0}^{\infty} s_i x^i = \frac{\varphi^*(x)}{f^*(x)} = \frac{\varphi^*(x)F^*(x)}{1-x^e}$$

 \Rightarrow all nontrivial output sequences **s** generated from f have per(f) as a general period, i.e., $per(\mathbf{s})|per(f)$

• when f(x) is irreducible, $f(x)|x^{\varepsilon} - 1 \Rightarrow per(f)|per(\mathbf{s})$ $\Rightarrow per(f) = per(\mathbf{s})$ for all nontrivial output sequences

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Periods of LFSR sequences

$$g(x) = \frac{\varphi^*(x)}{f^*(x)} = \frac{\sigma^*(x)}{1 - x^\varepsilon}$$

$$f(x)\sigma(x) = (x^{\varepsilon} - 1)\varphi(x)$$

• Let per(f) = e and $F(x) = (x^e - 1)/f(x)$,

$$g(x) = \sum_{i=0}^{\infty} s_i x^i = \frac{\varphi^*(x)}{f^*(x)} = \frac{\varphi^*(x)F^*(x)}{1-x^e}$$

 \Rightarrow all nontrivial output sequences **s** generated from f have per(f) as a general period, i.e., $per(\mathbf{s})|per(f)$

• when f(x) is irreducible, $f(x)|x^{\varepsilon} - 1 \Rightarrow per(f)|per(\mathbf{s})$ $\Rightarrow per(f) = per(\mathbf{s})$ for all nontrivial output sequences

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Periods of LFSR sequences

$$g(x) = \frac{\varphi^*(x)}{f^*(x)} = \frac{\sigma^*(x)}{1 - x^\varepsilon}$$

$$f(x)\sigma(x) = (x^{\varepsilon} - 1)\varphi(x)$$

• Let per(f) = e and $F(x) = (x^e - 1)/f(x)$,

$$g(x) = \sum_{i=0}^{\infty} s_i x^i = \frac{\varphi^*(x)}{f^*(x)} = \frac{\varphi^*(x)F^*(x)}{1-x^e}$$

 \Rightarrow all nontrivial output sequences **s** generated from f have per(f) as a general period, i.e., $per(\mathbf{s})|per(f)$

• when f(x) is irreducible, $f(x)|x^{\varepsilon} - 1 \Rightarrow per(f)|per(\mathbf{s})$ $\Rightarrow per(f) = per(\mathbf{s})$ for all nontrivial output sequences

Periods of LFSR sequences

When f(x) is primitive, i.e., $per(f) = 2^n - 1 \Rightarrow$ the well-known maximum-length sequences (*m*-sequence)

The *m*-sequences have very good statistical property (satisfying the Golomb's random postulates):

- \bullet balancedness
- run-property
- 2-level ideal autocorrelation

The *m*-sequences numerous applications in cryptography, sequence design, coding theory, radar system, GPS, \cdots

They lead us to many interesting problems in these fields

when it comes to nonlinear feedback functions, the world has dramatically changed ...

General knowledge about NFSRs is rather limited

 \bullet the output sequences are periodic iff. f is nonsingular, i.e.,

$$f = x_0 + g(x_1, \cdots, x_{n-1})$$

- the maximum period of an NFSR sequence is q^n , which is a q-ary DeBruijn sequence of order n
- the total number of such sequence is $\frac{(q!)^{q^{n-1}}}{q^n}$
- when q = 2, the number is $2^{2^{n-1}-n}$

Complexity Measures of Sequences 000000000

Problems with NFSRs are challenging

Periods of NFSR sequences

- hard problem in general
- rather few general results on the period
- some nontrivial result in the case that the feedback function is symmetric NFSRs (by Kjeldsen, Søreng during 1970-80s)
- Proofs are in general very technical and hard to read
- Mykkeltveit (1979) used arithmetic codes to study periods of NFSR

Problems with NFSRs are challenging

Generation of NFSR sequences (with prescribed periods)?

Only some results for the extremity case: deBruijn sequences

- comprehensive survey by Fredricksen in 1982
- algorithmic methods (expensive for large n)
- mathematic approaches (some progress with cycle joining method)
 - starting with LFSRs
 - investigate adjacent cycles
 - characterize conjugate paris and join small cycles
 - progress in recent years
 - $(1+x)p(x), (1+x^2)p(x)$ (Mykkeltveit, Hemmati)
 - $(1+x)^3 p(x)$, $(1+x^3)p(x)$ (Hellseth, Hu, Li, L. Zeng)
 - $(1+x)\prod_i p_i(x)$ for primitive/irreducible polynomials (Hellseth, Li, Li, Lin, L. Zeng, etc)
 - general polynomial $\prod_i p_i^{e_i}(x)$ (Lin et al.)

$FSRs \implies pseudo-random sequences$

pseudo-random sequences \implies FSRs

Linear Complexity

Let $\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})^{\infty}$ be a periodic sequence over \mathcal{F} .

The **linear complexity** $lc(\mathbf{s}_n)$ is the length L of the shortest LFSR that generate the sequence \mathbf{s}_n

- Berlekamp-Massey algorithm (initially from coding theory)
- find the (unique) shortest LFSR that generate the sequence if $n \ge 2lc(\mathbf{s}_n)$
- theoretic approach: $lc(\mathbf{s}_n) = \deg(f(x))$ and

$$\frac{\phi(x)}{f(x)} = \frac{\sigma(x)}{x^n - 1}$$

$$\Rightarrow lc(\mathbf{s}_n) = \deg(\frac{x^n - 1}{\gcd(x^n - 1, \sigma(x))}) = n - \deg(\gcd(x^n - 1, \sigma(x)))$$

Max. Nonlinear Complexity Seq. 00000000000000

Desirable properties for Applications

Sequences for cryptographic use should not have low linear complexity.

However, high linear complexity does not guarantee cryptographic strength

- E.g., $0 \cdots 01$ has maximum linear complexity, but poor cryptographic quality
- A sequence with high linear complexity can probably be generated by a (much) shorter FSR with nonlinear feedback function

Max. Nonlinear Complexity Seq. 00000000000000

Other Linear Complexity Measures

The k-th linear complexity $lc(\mathbf{s}_n, k)$, $1 \leq N \leq n-1$, is the length L of the shortest LFSR that generate $(s_0, s_1, \dots, s_{N-1})$

The k-th error linear complexity $lc_k(\mathbf{s}_n)$ is the smallest linear complexity that can be obtained by altering at most k positions in \mathbf{s}_n

Higher order complexity

The k-th order nonlinear complexity of $\mathbf{s} = (s_0, s_1, \cdots, s_{l-1})$ over an alphabet \mathcal{A} is the length of

the shortest FSR with feedback function of degree $\leq k$

that can generate the sequence \mathbf{s} .

- k = 1: linear complexity
- k = 2: quadratic complexity
- k = 3: cubic complexity

• ...

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Nonlinear Complexity

Maximum Order Complexity (by C. Jansen)

The **nonlinear complexity** of a sequence $\mathbf{s} = (s_0, s_1, \dots, s_{l-1})$ over a field \mathcal{F} is the length of the shortest (arbitrary) feedback shift register that can generate the sequence \mathbf{s} .

Max. Nonlinear Complexity Seq. 000000000000000

Basic Facts - (non-periodic) sequences

Given a sequence $\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})$ over \mathcal{F} ,

- nlc(s) = the shortest length l, such that all the subsequences of s of length l, have unique successor
- nlc(s) = the length-plus-one of the longest subsequences of s that occurs (at least) twice with different successor
- range of $nlc(\mathbf{s}): 0 \leq nlc(\mathbf{s}) \leq l-1$
 - $nlc(\mathbf{s}) = 0$ iff. the sequence $\mathbf{s} = (\alpha, \cdots, \alpha)$
 - $nlc(\mathbf{s}) = l 1$ iff. the sequence $\mathbf{s} = (\alpha, \cdots, \alpha, \beta)$ for $\alpha \neq \beta$
- a nonlinear complexity nlc(s) = c
 ⇒ all l-long subsequence of s are distinct for any for l > c
- calculation of $nlc(\mathbf{s})$: Blumer's algorithm for *directed acyclic word graph* (DAWG)

Max. Nonlinear Complexity Seq. 00000000000000

Basic Facts - periodic sequences

For a periodic sequence $\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})^{\infty}$ over \mathcal{F} ,

• the nonlinear complexity satisfies the inequality

$$\lceil \log_{|\mathcal{F}|}(n) \rceil \le nlc(\mathbf{s}_n) \le n-1$$

- the nonlinear complexity of a period sequence \mathbf{s}_n is the same as that of its
 - shift equivalent sequences

$$(s_i, s_{i+1}, \cdots, s_{i+n-1})^{\infty}, \quad i = 0, 1, \cdots, n-1$$

• transposed sequence

$$T\mathbf{s}_n = (Ts_0, Ts_1, \cdots, Ts_{n-1})^{\infty}$$

with an injection $T: \mathcal{A} \to \mathcal{B}$ for alphabet \mathcal{B} with $|\mathcal{B}| \ge |\mathcal{A}|$

- reciprocal sequence $(s_{n-1}, \cdots, s_1, s_0)^{\infty}$
- a complexity $nlc(\mathbf{s}_n) = c$
 - \Rightarrow there are *n* distinct *l*-long subsequence for any for $l \ge c$

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq. 00000000000000

Basic Facts - periodic sequences

Feedback Functions Equivalents

For a periodic sequence $\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})^{\infty}$ over a finite field GF(q), suppose the nonlinear complexity of \mathbf{s}_n is c, there exist in total

$$q^{q^c-n}$$

feedback functions that can the sequence \mathbf{s}_n

- for $n = q^c$, the sequence \mathbf{s}_n is a DeBruijn sequence of order c
- for q = 2, this number is equal to the number of binary DeBruijn sequences of order n

Complexity Measures of Sequences 00000000

Max. Nonlinear Complexity Seq. 00000000000000

Basic Facts - periodic sequences (cont.)

Given a periodic sequence
$$\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})^{\infty}$$
, let $\mathbf{s} = (s_0, s_1, \cdots, s_{n-1})$ (a single period of \mathbf{s}_n).

•
$$nlc(\mathbf{s}_n) \ge nlc(\mathbf{s})$$

• $nlc(\mathbf{s}_n) = nlc(\mathbf{s}^t)$ for $t \ge 2$, \mathbf{s}^t denotes the t copies of \mathbf{s}

In order to calculate $nlc(\mathbf{s}_n)$,

- it suffices to compute $nlc(\mathbf{s}^2)$
- more precisely, if $nlc(\mathbf{s}_n) = c$, one only needs to investigate

$$nlc(s_0, s_1, \cdots, s_{n-1}, s_0, \cdots, s_{c-2})$$

• by $nlc(\mathbf{s}_n) \leq n-1$, it suffices to calculate

$$nlc(s_0, s_1, \cdots, s_{n-1}, s_0, \cdots, s_{n-3}),$$

Motivation

- high linear/nonlinear complexity is desirable for (cryptographic) applications
- non-periodic sequences: only one sequence $(\alpha \cdots \alpha \beta)$ has maximum nonlinear complexity
- for periodic sequences,
 - $(\alpha \cdots \alpha \beta)^{\infty}$ has maximum nonlinear complexity
 - there are other periodic sequences with maximum nonlinear complexity

Question

Can we characterize the periodic sequences with maximum nonlinear complexity?

Necessary Conditions

If a periodic sequence $\mathbf{s}_n = (s_0, s_1, \cdots, s_{n-1})^\infty$ with nlc = c,

- there exist two identical (c-1)-long subsequence with different successors in $(s_0, s_1, \cdots, s_{n-1}, s_0, \cdots, s_{c-2})$;
- each c-long subsequence of \mathbf{s}_n are distinct

If $nlc(\mathbf{s}_n) = n - 1$, then there is a integer $1 \le p < n$ such that

•
$$(s_0, s_1, \cdots, s_{n-3}) = (s_p, s_{p+1}, \cdots, s_{p+n-3});$$

•
$$s_{n-2} \neq s_{p+n-2}$$
; moreover, $s_{n-1} \neq s_{p+n-1} = s_{p-1}$

Complexity Measures of Sequences 000000000

Necessary Conditions (cont.)

$$nlc(\mathbf{s}_n) = n - 1 \Leftrightarrow \exists 1 \le p < n \text{ such that } s_i = s_{i+p} \text{ iff. } i \in \mathbb{Z}_{n-2}$$

Question: what are such integers p ?					
Example: Let $n = 10$ and $T_i = \{k \in \mathbb{Z}_n : s_k = s_i\}$ for $i \in \mathbb{Z}_n$					
p = 1	$T_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$	$s_8 \neq s_9, s_9 \neq s_0$			
p=2	$T_0 = \{0, 2, 4, 6, 8\}$	$s_8 \neq s_0, s_9 \neq s_1$			
	$T_1 = \{1, 3, 5, 7, 9\}$				
p = 3	$T_0 = T_1 = \{0, 3, 6, 9, 1, 4, 7, 0\}$	$s_8 \neq s_1, s_9 \neq s_2$			
	$T_2 = \{2, 5, 8\}$				
p=4	$T_0 = \{0, 4, 8\}, T_1 = \{1, 5, 9\}$	$s_8 \neq s_2, s_9 \neq s_3$			
	$T_2 = \{2, 6, 0\}, T_3 = \{3, 7, 1\}$				
p=5	$T_0 = \{0, 5\}, T_1 = \{1, 6\}, T_2 = \{2, 7\}$	$s_8 \neq s_3, s_9 \neq s_4$			
	$T_3 = \{3, 8\}, T_4 = \{4, 9\}$				

- \bullet Continuing the above process, p cannot be 6,8
- It appears that p needs to be coprime to n

Complexity Measures of Sequences 000000000

Necessary Conditions (cont.)

Take
$$f = n / \operatorname{gcd}(p, n)$$
 and define

$$K = \{ (p-1) + tp(\text{mod}n) : t = 0, 1, \cdots, f - 2 \}.$$

It follows that

•
$$n-1 = (p-1) + (f-1)p \pmod{n} \notin K;$$

•
$$n-2$$
 belongs to K ; otherwise,

$$s_{p-1} = \dots = s_{(p-1)+(f-2)p} = s_{(p-1)+(f-1)p} = s_{n-1}$$

• thus
$$n - 2 = (p - 1) + t_0 p \pmod{n}$$
 for some t_0

A periodic sequence
$$\mathbf{s}_n$$
 has $nlc(\mathbf{s}_n) = n - 1$
 $\Leftrightarrow \exists 1 \le p < n \text{ such that } s_i = s_{i+p} \text{ holds iff. } i \in \mathbb{Z}_{n-2}$
 $\Rightarrow \gcd(p, n) = 1$

Necessary Conditions (cont.)

Furthermore,

• $gcd(p,n) = 1 \Rightarrow$ there exists a unique pair $(u,v) \in \mathbb{Z}_p^* \times \mathbb{Z}_n^*$ such that un - vp = 1.

• \mathbb{Z}_{n-1} can be partitioned as $\mathbb{Z}_{n-1} = H_1 \cup H_2$ with

$$H_1 = \{(p-1) + tp(\text{mod } n) : t = 0, 1, \cdots, v-1\}$$

$$H_2 = \{(p-1) + tp(\text{mod } n) : t = v, \cdots, n-1\}$$

$$= \{(p-2) + tp(\text{mod } n) : t = 0, 1, \cdots, n-v-1\}$$

$$s_i = s_{i+p}$$
 holds iff. $i \in \mathbb{Z}_{n-2}$ implies
• $s_i = s_{n-2}$ for $i \in H_1$ and $s_i = s_{n-1}$ for $i \in H_2$
• $s_{n-1} \neq s_{n-2}$

Complexity Measures of Sequences

Necessary Conditions

A periodic sequence
$$\mathbf{s}_n$$
 has $nlc(\mathbf{s}_n) = n - 1$
 $\Leftrightarrow \exists 1 \leq p < n$ such that $s_i = s_{i+p}$ iff. $i \in \mathbb{Z}_{n-2}$
 $\Rightarrow \gcd(p, n) = 1$
• $\exists (u, v) \in \mathbb{Z}_p^* \times \mathbb{Z}_n^*$ such that $un - vp = 1$
• partition $\mathbb{Z}_n = H_1 \cup H_2$ with
 $H_1 = \{(p-1) + tp(\text{mod } n) : t \in \mathbb{Z}_v\}$ and
 $H_2 = \{(p-2) + tp(\text{mod } n) : t \in \mathbb{Z}_{n-v}\}$
 $\Rightarrow s_i = \begin{cases} s_{n-2} & \text{for } i \in H_1 \\ s_{n-1} & \text{for } i \in H_2 \end{cases}$ and $s_{n-2} \neq s_{n-1}$

Question: What does \mathbf{s}_n look like for other p coprime to n?

Complexity Measures of Sequences 000000000 Max. Nonlinear Complexity Seq.

A recursive construction

For two integers r_0, r_1 with $r_0 > r_1$ and $gcd(r_0, r_1) = 1$, applying the Euclidean algorithm on them gives

$$r_{i+1} = r_{i-1} - m_i r_i, \quad i = 1, 2, \cdots, k,$$

with $r_1 > r_2 > \cdots > r_{k+1} = 1$.

Define a class of periodic sequences as follows:

$$\begin{cases} \mathbf{s}_{r_0} &= (\mathbf{s}_{r_1})^{m_1} \mathbf{s}_{r_2}, \\ \mathbf{s}_{r_1} &= (\mathbf{s}_{r_2})^{m_2} \mathbf{s}_{r_3}, \\ &\vdots \\ \mathbf{s}_{r_{k-1}} &= (\mathbf{s}_{r_k})^{m_k} \mathbf{s}_{r_{k+1}} \end{cases}$$

where \mathbf{a}^t denotes the concatenation of t copies of \mathbf{a}

The periodic sequences are given by

$$\mathbf{s}_{r_{i-1}} = (\mathbf{s}_{r_i})^{m_i} \mathbf{s}_{r_{i+1}}, \quad i = 0, 1, \cdots, k$$

with $r_{i+1} = r_{i-1} - m_i r_i$.

- s_{rk-1} is uniquely determined by s_{rk} and s_{rk+1} with m_k
 s_{rk-2} is uniquely determined by s_{rk-1} and s_{rk} with m_{k-1}
 ...
- recursively, \mathbf{s}_{r_0} is determined by \mathbf{s}_{r_k} , $\mathbf{s}_{r_{k+1}}$ and the integers m_k, \cdots, m_1 and r_k, \cdots, r_1

Complexity Measures of Sequences 000000000 The periodic sequences are given by

$$\mathbf{s}_{r_{i-1}} = (\mathbf{s}_{r_i})^{m_i} \mathbf{s}_{r_{i+1}}, \quad i = 0, 1, \cdots, k$$

with $r_{i+1} = r_{i-1} - m_i r_i$.

Theorem 1

If $\mathbf{s}_{r_k} = ((\alpha)^{r_k-1}\beta)$, $\mathbf{s}_{r_{k+1}} = (\alpha)$, then $nlc(\mathbf{s}_{r_{k-1}}) = r_{k-1} - 1$. Moreover,

$$nlc(\mathbf{s}_{r_{k-2}}) = r_{k-2} - 1$$

$$\vdots$$

$$nlc(\mathbf{s}_{r_1}) = r_1 - 1$$

$$nlc(\mathbf{s}_{r_0}) = r_0 - 1$$

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq.

 $nlc(\mathbf{s}_n) = n - 1 \Leftrightarrow \exists 1 \le p < n \text{ such that } s_i = s_{i+p} \text{ iff. } i \in \mathbb{Z}_{n-2}$

Proof of Theorem 1.

- $nlc(\mathbf{s}_{r_k}) = r_k 1$ and $nlc(\mathbf{s}_{r_{k+1}}) = r_{k+1} 1 = 0$
- for the periodic sequence

$$\mathbf{s}_{r_{k-1}} = (\mathbf{s}_{r_k})^{m_k} \mathbf{s}_{r_{k+1}} = (\alpha^{r_k - 1} \beta)^{m_k} \beta$$

• denote
$$\mathbf{s} = (\mathbf{s}_{r_{k-1}})^2$$

• $\mathbf{s}[0:r_{k-1}-1] = \mathbf{s}_{r_{k-1}} = (\mathbf{s}_{r_k})^{m_k-1} \mathbf{s}_{r_k} \mathbf{s}_{r_{k+1}}$
• $\mathbf{s}[r_k:r_k+r_{k-1}-1] = (\mathbf{s}_{r_k})^{m_k-1} \mathbf{s}_{r_{k+1}} \mathbf{s}_{r_k}$
• $\mathbf{s}_{r_k} \mathbf{s}_{r_{k+1}} = (\alpha^{r_k-1}\beta)\alpha = (\alpha^{r_k-1})\beta\alpha$
• $\mathbf{s}_{r_{k+1}} \mathbf{s}_{r_k} = \alpha(\alpha^{r_k-1}\beta) = (\alpha^{r_k-1})\alpha\beta$
• $\mathbf{s}[0:r_{k-1}-3] = \mathbf{s}[r_k:r_k+r_{k-1}-3]$
• $\mathbf{s}[r_{k-1}-2:r_{k-1}-1] \neq \mathbf{s}[r_k+r_{k-1}-2:r_k+r_{k-1}-1]$
• $nlc(\mathbf{s}_{r_i}) = r_i - 1$ by induction

1)

Complexity Measures of Sequences

Max. Nonlinear Complexity Seq.

Main Theorem

A periodic sequence \mathbf{s}_n over \mathcal{F} has $nlc(\mathbf{s}_n) = n - 1$ if and only if it can, up to shift equivalence, be represented as one of the following two forms:

2) $\mathbf{s}_n = \mathbf{s}_{r_0} = (\mathbf{s}_{r_1})^{m_1} \mathbf{s}_{r_2}$ for certain integer $r_1 \in \mathbb{Z}_n^*$ with

$$\mathbf{s}_{r_{i-1}} = (\mathbf{s}_{r_i})^{m_i} \mathbf{s}_{r_{i+1}}, \ i = 1, 2, \cdots, k,$$

 $\mathbf{s}_n = ((\alpha)^{n-1}\beta)$ for p = 1,

and

$$\mathbf{s}_{r_k} = ((\alpha)^{r_k - 1}\beta), \mathbf{s}_{r_{k+1}} = (\alpha),$$

where the integers m_i , r_{i+1} are derived from $r_{i+1} = r_{i-1} - m_i r_i$ with $r_1 > r_2 > \cdots > r_{k+1} = 1$, where α, β are any two different elements of \mathcal{F} .

Proof of Necessity.

A periodic sequence \mathbf{s}_n has $nlc(\mathbf{s}_n) = n - 1$ $\Leftrightarrow \exists 1 \leq p < n$ such that $s_i = s_{i+p}$ iff. $i \in \mathbb{Z}_{n-2}$ $\Rightarrow \gcd(p, n) = 1$ • $\exists (u, v) \in \mathbb{Z}_p^* \times \mathbb{Z}_n^*$ such that un - vp = 1• partition $\mathbb{Z}_n = H_1 \cup H_2$ with $H_1 = \{(p-1) + tp(\text{mod } n) : t \in \mathbb{Z}_v\}$ and $H_2 = \{(p-2) + tp(\text{mod } n) : t \in \mathbb{Z}_{n-v}\}$ $\Rightarrow s_i = \begin{cases} s_{n-2} & \text{for } i \in H_1 \\ s_{n-1} & \text{for } i \in H_2 \end{cases}$ and $s_{n-2} \neq s_{n-1}$

Proof of Necessity.

- $\mathbf{s}_{r_0} = r_0 1 \Rightarrow \exists r_1 \in \mathbb{Z}_{r_0}^*$ yielding $r_1 > \cdots > r_k > r_{k+1} = 1$
- $gcd(r_i, r_{i+1}) = 1 \Rightarrow \exists u_i, v_i \text{ s.t. } u_i r_i v_i r_{i+1} = 1 \text{ for}$ $i = 0, 1, \cdots, k$
- define sets

$$H_{i,1} = \{ (r_{i+1} - 1 + t \cdot r_{i+1}) \pmod{r_i} \mid t \in \mathbb{Z}_{v_i} \}, H_{i,2} = \{ (r_{i+1} - 2 + t \cdot r_{i+1}) \pmod{r_i} \mid t \in \mathbb{Z}_{r_i - v_i} \}$$

•
$$\mathbb{Z}_{r_i} = H_{i,1} \cup H_{i,2}$$
 and $\mathbf{s}_{r_i}[t] = \begin{cases} \mathbf{s}_{r_i}[r_i - 2] & \text{for } t \in H_{i,1} \\ \mathbf{s}_{r_i}[r_i - 1] & \text{for } t \in H_{i,2} \end{cases}$

Complexity Measures of Sequences

Proof of Necessity (cont).

$$\mathbb{Z}_{r_i} = H_{i,1} \cup H_{i,2} \text{ and } \mathbf{s}_{r_i}[t] = \begin{cases} \mathbf{s}_{r_i}[r_i - 2] & \text{ for } t \in H_{i,1} \\ \mathbf{s}_{r_i}[r_i - 1] & \text{ for } t \in H_{i,2} \end{cases}$$

How to determine $H_{i,1}$ and $H_{i,2}$?

- $H_{i,1} = \bigcup_{t \in H_{i+1,2}} \{ x \in \mathbb{Z}_{r_i} \mid x \equiv t \pmod{r_{i+1}} \}$
- $H_{i,2} = \bigcup_{t \in H_{i+1,1}} \{ x \in \mathbb{Z}_{r_i} \mid x \equiv t \pmod{r_{i+1}} \}$

• This implies

$$\begin{array}{rccc} H_{k,1}, H_{k,2} & \Rightarrow & H_{k-1,1}, \, H_{k-1,2} \\ & \vdots \\ & & \\ H_{2,1}, H_{2,2} & \Rightarrow & H_{1,1}, \, H_{1,2} \\ & H_{1,1}, H_{1,2} & \Rightarrow & H_{0,1}, \, H_{0,2} \end{array}$$

Enumeration

The total number N, up to shift equivalence, of periodic sequence with maximum nonlinear complexity over \mathcal{F} is

$$N = \phi(n) |\mathcal{F}|/2,$$

where $\phi(n)$ is the Euler's totient function.

Feedback S	Shift	Registers

Complexity Measures of Sequences 000000000

Examples

n	Sequences	# Seq.
3	001, 011	2
4	0001, 0111	2
5	00001, 00101, 01011, 01111	4
6	000001, 011111	2
7	0000001, 0001001, 0010101, 0101011, 0110111, 0111111	6
8	00000001, 00100101, 01011011, 01111111	4
9	000000001, 000010001, 001010101, 01010101	6
10	0000000001, 0001001001, 0110110111, 011111111	4
11	0000000001, 00000100001, 00010001001, 00100100101, 001010101	10
	01010101011, 01011011011, 01101110111, 01111011111, 011111111	
12	00000000001, 001010010101, 010101101011	4
13	000000000001, 0000001000001, 00001000100	12
	0010010100101, 0010101010101, 0101010101	
	0110110110111, 0111011101111, 0111110111111, 011111111	
14	0000000000001, 00001000010001, 00100100100101	6
	01011011011011, 01110111101111, 011111111	
15	00000000000001, 000000010000001, 00010001	8
	010101010101011, 011011101110111, 011111101111111, 011111111	
16	000000000000001, 0000010000100001, 0001001001001001, 001010101	8
	0101010110101011, 0110110110110111, 0111101111011111, 011111111	

Randomness Analysis

For all binary periodic sequences \mathbf{s}_n with $nlc(\mathbf{s}_n) = n - 1$,

- balancedness: \mathbf{s}_n is (nearly) balanced only if $\mathbf{s}_n = (01)^{\frac{n-1}{2}} 0$ for odd; others are far from being balanced
- **scalability:** there exist many subsequence with small nonlinear complexity
- *k*-th error complexity: changing a few bits dramatically decrease the nonlinear complexity

The randomness properties of such sequences are not sounding.

Thanks for your attention!